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The Coleman-No11 inequality in thermodynamics 
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Received 18 March 1975 

Abstract. I t  is shown that the fundamental inequality used to define a local state of thermal 
equilibrium by Coleman and NOH in their theory of thermostatics ofcontinua, is wrong. The 
variation of states employed in it does not exclude states connected by symmetry transforma- 
tions to the postulated state of thermal equilibrium. For such states the inequality must be 
an equality, This error is especially important for a material whose symmetry (isotropy) 
group is continuous, such as a simple fluid and an isotropic material. The proofs of three 
theorems given by Coleman and No11 are, as a result, invalid. These theorems essentially 
state that the pressure of a fluid must be positive, and that for isotropic materials 'the greater 
stretch will occur in the direction of the greater force'(the ordered force inequality of Truesdell 
and Toupin). 

1. Introduction 

Coleman and No11 (1959) proposed an inequality which has been named the CN inequality 
(Truesdell and Toupin 1963, Truesdell and No11 1965). I t  was introduced to define a 
state of thermal equilibrium, ie it was part of a fundamental postulate in their theory of the 
thermostatics of continua. It has been further used to develop many results and other 
inequalities such as that described by Truesdell and No11 (1965) as the generalized 
Coleman-No11 inequality (GCN). 

Coleman and Noli (1959) used this definition to prove three theorems (theorems 6,8, 
8a in their 1959 paper). Theorem 6 essentially stated that the pressure of a simple fluid 
must be positive, while theorems 8, and 8a essentially state that for an isotropic medium, 
if the principal stretch ui is greater than the principal stretch uk, then the principal stress 
measured per unit area of the undistorted reference state, in the direction of u i  is greater 
than that in the direction of uk. Here v i ,  i = 1,2,3 are the eigenvalues of the positive- 
definite symmetric matrix I/ which is a factor in the unique polar decomposition 

F = QV 

where F is the deformation gradient tensor, and where Q is an orthogonal matrix (the 
notation of Coleman and No11 1959, is used throughout). 

I t  is now shown in this paper that the proofs of these three theorems are invalid 
and that the postulate of thermal equilibrium must be modified. In fact the three theorems 
cannot be justified, even when the postulate is suitably altered. This alteration is re- 
quired simply because the implications of the symmetry properties of the material 
considered were not taken fully into account. 

t At present : UK Commonwealth Visiting Professor, Physics Department, University of Hull, Hull, UK. 
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2. Coleman-Noll inequality 

The CN inequality is expressed in terms of a state function 

4 F 3  V )  = t ( F ,  q)-(l/'pr)Tr(FSr)-q6 (2) 

where q,  ? are, respectively, the entropy and energy density (per unit mass); pr is the mass 
density at the reference state. Sr is the Kirchhoff stress tensor ; Tr(A) denotes the trace of 
any tensor A.  The local state in (2) is defined by ( F ,  q ) .  

The definition of thermal equilibrium given by Coleman and No11 is as follows. 
A local state ( F ,  q )  is called a state of thermal equilibrium under a given force tempera- 

ture pair (&, 6) if: (a)  The Cauchy stress tensor 

S = (p/pr)FS, (3) 

X(F*, q*) > 2(F ,  q )  

is symmetric; ( b )  the inequality 

(4) 

holds for all states ( F * ,  q*)  # ( F ,  q ) ,  such that 

F* = GF ( 5 )  

where G is symmetric and positive-definite. p is the mass density at the state ( F ,  q) .  
As stated in the introduction this definition was used to prove theorems 6,8,8a. For 

the purposes of this paper we should note that these proofs for both the simple fluid and 
isotropic material, depended in each case on transformations G of (3, which are uni- 
modular and therefore such that U* = U ,  where U* and U are the specific volumes of the 
states (F*,  q*) and ( F ,  q ) ;  ie U = l/p. 

Theorems 8 and 8a are not consistent with results obtained theoretically by Rivlin 
(1948) and this was pointed out by Rivlin (1967). As to theorem 6,  no known physical 
considerations of actual fluids require this to be true. In fact it has been shown experi- 
mentally that fluids can sustain negative pressures, which in the case of water can be 
surprisingly large (see eg Briggs 1950, Winnick and Cho 1971). Briggs, for example, 
showed for water that the limiting negative pressure had a maximum value at 10 "C of 
280 atm! Near 0 "C the limiting negative pressure dropped rather sharply to about 10% 
of the maximum value. Above 10°C it dropped more gradually to about 150atm at 
50 "C. 

3. Simple demonstration of the invalidity of the CN theorems 6, 8, 8a 

On using (3) to eliminate the tensor SI from (2) in favour of the Cauchy stress tensor, it is 
easy to show that 

(6) K ( F ,  q )  = Z(F,  9 )  + 3 n ~  
where 

II = -iTr(S) (7) 

where this definition of n is such that it becomes the pressure p when hydrostatic condi- 
tions prevail, ie when S = - P E ,  where E is the unit matrix. 
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Now in the case of a simple fluid, it can be shown that 

2(F,q) = z ( c , ~ ) ,  (8) 

ie the energy density is a function oft' and q,  only. 
To prove theorem 6, Coleman and No11 applied the inequality (4) to a case where 

q* = q and where G is unimodular, ie where c* = U .  However, we see from (8) that in this 
case z = z* ,  and the result of applying inequality (4) is that 

(n* -n)t' > 0, (9) 

thus the result of the inequality is that 

n* > 71, ie p*  > p ,  (10) 

as would be expected in classical hydrostatic thermodynamics-although Gibbs used 2 
rather than > in the inequality corresponding to (4). There is no sign in the above pro- 
cedure of the requirement that p be positive emerging as a result. 

Similarly in the case of isotropic materials, q* was taken equal to q,  and a trans- 
formation G was chosen as a unimodular tensor which commuted with V,  the positive- 
definite symmetric factor of F in (1). G was, in particular, chosen such that if u l ,  u 2 ,  u3 are 
the eigenvalues (principal stretches) of V, then 07, U : ,  those of V* = GV, are respec- 
tively u 2 ,  u l ,  u 3 .  Thus again t'* = t' and since 2 can be shown to be a symmetric function 
of U', u 2 ,  u 3 ,  then again z = c* and the application of (4) leads again to (9) and (IO), with 
no sign of the results of theorems 8, Sa emerging. 

Thus we have demonstrated that the proofs of the CN theorems 6,8,8a are invalid. 

4. Where is the error ? 

The reason for these invalid proofs is that the effects of the isotropy group of the material 
have not been fully considered in the postulate for thermal equilibrium, as can be directly 
demonstrated. 

2 is a state function of the material, and so like 2 and q,  its behaviour is affected by the 
isotropy group (symmetry group) of the material, ie 2 must be invariant to symmetry 
transformations R such that 

Thus if we take a transformation G such that 

G = F R F - ' ,  ie G F = F R  (12) 

where R is a member of the symmetry group, then we see from ( 1  1) that the inequality (4) 
cannot apply in this case-we have equality. 

For a simple fluid, we see that for any unimodular transformation G ,  as in (3, there 
is a corresponding transformation R which is unimodular and thus is a member of the 
symmetry group for a simple fluid-which is the group of unimodular transformations. 
Thus if we wish to use (4) as part of a definition of thermal equilibrium of a simple fluid, 
we must exclude positive-definite symmetric transformations G which are unimodular. 
It requires a glance only at the Coleman and No11 proof of theorem 6 to see that it is 
exactly such a transformation which is employed. 
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In their treatment of an isotropic material, it may be seen that for the transformation 
F* = G F ,  they have taken 

G = Q G Q ~  (13) 

R = F-'GF = G. (14) 

I f  R is a symmetry transformation as in ( l l ) ,  then we see that the inequality (4) again 
cannot hold. As described in 4 3, the G chosen-and so R-is indeed a symmetry trans- 
formation. 

where G commutes with the polar factor V. On using (1) we verify that, in this case 

5. The definition of thermal equilibrium 

From the preceding discussion, it is clear that the CN definition should be modified by 
either substituting 2 for >, or by stating that G must not only be symmetric and 
positive-definite, but also must be such that F- ' G F  is not a symmetry transformation in 
the sense of (1 1). Since F* is in the neighbourhood of F this restriction will be especially 
important for materials with continuous symmetry groups. 
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